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Introduction



Setup 3

(𝑋, ℬ, 𝜇) a probability space or a Lebesgue space.

𝑇 : 𝑋 → 𝑋  a measure-preserving transformation.

We say that 𝑇1 : 𝑋1 → 𝑋1 and 𝑇2 : 𝑋2 → 𝑋2 defined on (𝑋1, ℬ1, 𝜇) and
(𝑋2, ℬ2, 𝜈), are isomorphic if there are 𝐴1 ∈ ℬ1, 𝐴2 ∈ ℬ2 such that

• 𝜇(𝐴1) = 𝜈(𝐴2) = 1

• 𝑇1(𝐴1) ⊂ 𝐴1,  𝑇2(𝐴2) ⊂ 𝐴2

• ∃ 𝜑 : 𝐴1 → 𝐴2 invertible measure preserving map such that

𝜑 ∘ 𝑇1 = 𝑇2 ∘ 𝜑.



Baker's map 4

𝑋 = [0, 1]2,  𝑇(𝑥, 𝑦) = {
      (2𝑥, 𝑦/2)         if 𝑥 ∈ [0, 1

2
)

(2𝑥 − 1, (𝑦 + 1)/2)  if 𝑥 ∈ [ 1

2
, 1]

T

0 1

0

1



Baker's map 5



Coding the baker's map 6

To each orbit {…, 𝑇−1(𝑥), 𝑥, 𝑇(𝑥), …}
we relate a sequence (𝑥𝑛)𝑛 of zeros and
ones:

• if 𝑇𝑛𝑥 ∈ [0, 1

2
) × [0, 1], code 𝑥𝑛 = 0

• if 𝑇𝑛𝑥 ∈ [ 1

2
, 1] × [0, 1], code 𝑥𝑛 = 1

0 1

T 3(x)

x

T(x) T 2(x)

𝒪(𝑥) = ( … ;  0011… )
𝒪(𝑇(𝑥)) = ( …0 ;  011… )



Symbolic Dynamics 7

Α is a finite alphabet

ΣΑ = Αℤ = {(𝑥𝑛)𝑛∈ℤ : 𝑥𝑛 ∈ Α}

(𝑥𝑛)𝑛∈ℤ = ( ⋅ ⋅ ⋅ 𝑥−2𝑥−1 ;  𝑥0𝑥1 ⋅ ⋅ ⋅  ) ∈ ΣΑ

ΣΑ is a compact metric space with

𝑑((𝑥𝑛), (𝑦𝑛)) = 2− inf  {|𝑖| : 𝑥𝑖≠𝑦𝑖}

The Bernoullis shift 𝜎 : ΣΑ → ΣΑ is the map

𝜎( ⋅ ⋅ ⋅ 𝑥−2𝑥−1 ;  𝑥0𝑥1 ⋅ ⋅ ⋅  ) = ( ⋅ ⋅ ⋅ 𝑥−1𝑥0 ;  𝑥1𝑥2 ⋅ ⋅ ⋅  ).



Symbolic Dynamics 8

Let 𝒞 the 𝜎-algebra generated by the cylinder sets

• 𝐶𝑖[𝑠] = {(𝑥𝑛) ∈ Σ : 𝑥𝑖 = 𝑠}

• 𝐶𝑖[𝑠𝑖…𝑠𝑘] = {(𝑥𝑛) ∈ Σ : 𝑥𝑖 = 𝑠𝑖, …, 𝑥𝑘 = 𝑠𝑘}

( ⋅ ⋅ ⋅ 𝑥𝑖−1 𝑠𝑖𝑠1+1 ⋅ ⋅ ⋅ 𝑠𝑘 𝑥𝑘+1 ⋅ ⋅ ⋅  ) ∈ 𝐶𝑖[𝑠𝑖…𝑠𝑘]

Given a probability distribution (𝑝𝛼 : 𝛼 ∈ Α) in Α, we define a probability
measure by

• 𝜇(𝐶𝑖[𝑠]) = 𝑝𝑠

• 𝜇(𝐶𝑖[𝑠𝑖…𝑠𝑘]) = 𝜇(𝐶𝑖[𝑠𝑖]) … 𝜇(𝐶𝑘[𝑠𝑘]) = 𝑝𝑠𝑖
 … 𝑝𝑠𝑘

.

(Σ, 𝒞, 𝜇) is a probability space.



Symbolic Dynamics 9

A measurable map 𝑇 : 𝑋 → 𝑋  is a Bernoulli transformation if it is isomorphic
to a Bernoulli shift.



Isomorphism problem of Bernoullis shifts 10

• Von Neumann: spectral isomorphism.
• Kolmogorov and Sinai entropy.
• Ornstein isomorphism theorem.



Shannon Entropy 11

For a probability distribution 𝜌 = (𝑝𝛼 : 𝛼 ∈ Α),

ℎ(𝜌) ≝ ∑
𝛼∈Α

−𝑝𝛼 log 𝑝𝛼.

Entropy is the measure of uncertainty.

Claude Shannon



Kolmogorov-Sinai Entropy 12

Entropy of a partition,

𝐻𝜇(𝒫) ≝ ∑
𝑃∈𝒫

−𝜇(𝑃) log 𝜇(𝑃).

Entropy of a transformation with respect
to a partition,

ℎ𝜇(𝑇, 𝒫) ≝ lim
𝑘→∞

1
𝑘𝐻𝜇(⋁

𝑘−1

𝑖=0

𝑇−𝑖𝒫).

Entropy of a transformation,

ℎ𝜇(𝑇) ≝ sup
𝒫

ℎ𝜇(𝑇, 𝒫).

𝑇1 ≃ 𝑇2 ⇒ ℎ𝜇(𝑇1) = ℎ𝜇(𝑇2).

Andrei Kolmogorov



Kolmogorov-Sinai Entropy 13

Kolmogorov-Sinai theorem

Let 𝒫1 ≺ 𝒫2 ≺ ⋯ to be a non-decreasing ge-
nerating sequence of partitions with finite
entropy. Then,

ℎ𝜇(𝑇) = lim
𝑘

ℎ𝜇(𝑇, 𝒫𝑘).

Yakov Sinai



Ornstein isomorphism theorem 14

Ornstein, 1970

Bernoulli shifts with the same entropy are iso-
morphic.

• Bôcher Memorial Prize
• Elect to American National Academy of Sciences
• Elect to American Academy of Arts and Sciences

Donald Ornstein, 1961



Non-invertible case: Extended Symbolic Dynamics 15

Encoding n-to-1 baker’s transformations

Folding entropy for extended shifts

Ornstein isomorphism theorem for n-to-1 LM-Bernoulli transformations



Encoding n-to-1
baker’s maps
Mehdipour, P., Martins, N.
Archiv der Mathematik.
119, 199–211, (2022). 🔖



Zip shifts 17

• Α and Β be two alphabets with |Α| ≥ |Β|

• 𝜅 : Α → Β a surjective map

• Σ the space of all sequence of letters

(𝑥𝑛)𝑛∈ℤ = (⋅ ⋅ ⋅ 𝑥−2𝑥−1 ;  𝑥0𝑥1 ⋅ ⋅ ⋅)

with 𝑥−1, 𝑥−2, … ∈ Β  and 𝑥0, 𝑥1, … ∈ Α.

The (full) zip shift map is 𝜎𝜅 : Σ → Σ with

𝜎𝜅( ⋅ ⋅ ⋅ 𝑥−1 ;  𝑥0𝑥1 ⋅ ⋅ ⋅  ) = (⋅ ⋅ ⋅ 𝑥−1𝜅(𝑥0) ;  𝑥1𝑥2 ⋅ ⋅ ⋅).



Zip shift space 18

Let 𝒞 the 𝜎-algebra generated by the cylinder sets
• 𝐶𝑖[𝑠] ≝ {(𝑥𝑛) ∈ Σ : 𝑥𝑖 = 𝑠}
• 𝐶𝑖[𝑠𝑖…𝑠𝑘] ≝ {(𝑥𝑛) ∈ Σ : 𝑥𝑖 = 𝑠𝑖, …, 𝑥𝑘 = 𝑠𝑘}

Given a probability distribution (𝑝𝛼 : 𝛼 ∈ Α) in Α, we define
(𝑝𝛽 : 𝛽 ∈ Β)

𝑝𝛽 ≝ ∑
𝛼∈𝜅−1(𝛽)

𝑝𝛼.

The measure 𝜇 is defined by
• 𝜇(𝐶𝑖[𝑠]) = 𝑝𝑠
• 𝜇(𝐶𝑖[𝑠𝑖…𝑠𝑘]) = 𝜇(𝐶𝑖[𝑠𝑖]) … 𝜇(𝐶𝑘[𝑠𝑘]) = 𝑝𝑠𝑖

 … 𝑝𝑠𝑘
.

(Σ, 𝒞, 𝜇) is the zip shift space.

A map is a LM-Bernoulli transformation if is isomorphic to a zip shift map. A
LM-Bernoulli with 𝑚 = |Α|, 𝑙 = |Β| is called a (𝑚, 𝑙)-Bernoulli transformation.



Zip shifts 19

Prop.3.6-11

• 𝜎𝜅 is a local homeomorphism
• 𝜎𝜅 preserves the measure 𝜇
• 𝜎𝜅 is mixing and ergodic
• 𝜎𝜅 has density of periodic points



The n-to-1 baker's maps 20

𝑇 : [0, 1]2 → [0, 1]2 given by

𝑇(𝑥, 𝑦) =

{
{
{
{
{

{
{
{
{(2𝑛𝑥, 1

2
𝑦) if 0 ≤ 𝑥 < 1

2𝑛

(2𝑛𝑥 − 1, 1

2
𝑦 + 1

2
) if 1

2𝑛
≤ 𝑥 < 2

2𝑛

(2𝑛𝑥 − 2, 1

2
𝑦) if 2

2𝑛
≤ 𝑥 < 3

2𝑛
 ⋮ ⋮ ⋮

(2𝑛𝑥 − (2𝑛 − 1), 1

2
𝑦 + 1

2
) if 2𝑛−1

2𝑛
≤ 𝑥 ≤ 1.



The n-to-1 baker's maps 21



The n-to-1 baker's maps are LM-Bernoulli 22

Theorem A Thm.3.13

The n-to-1 baker’s map is a (2, 2𝑛)-Bernoulli transformation.

T

0 1 2 3

a

b



The n-to-1 baker's maps are chaotic 23

Theorem B Thm.3.13

The n-to-1 baker’s map 𝑇 : 𝑋 → 𝑋  is chaotic in the sense of Devaney.

Devaney’s chaos:
• Topologically transitive
• Density of periodic points
• Sensitive dependence on initial conditions.



Folding entropy
of Extended Shifts
Martins, N., Mattos, P.G., Varão, R.
arXiv:2407.01828 (2024). 🔖



Partitions by cylinders 25

𝒞𝑖 = { 𝑖} = {{𝐶𝑖[𝛼] : 𝛼 ∈ Α}  if 𝑖 ≥ 0
{𝐶𝑖[𝛽] : 𝛽 ∈ Β}  if 𝑖 < 0

𝒞𝑘0⋯𝑘1 = { 𝑘0⋯ 𝑘1} = {𝐶𝑘0⋯𝑘1[𝑠𝑘0⋯𝑠𝑘1] : 𝑠𝑘0, …, 𝑠𝑘1 ∈ Α ∪ Β} = ⋁

𝑘1

𝑖=𝑘0

𝒞𝑖.



Partitions by cylinders 26

• 𝒞𝑖 and 𝒞𝑗  are independent partitions, ∀𝑖, 𝑗

• 𝜎𝑖
𝜅(𝒞0) = 𝒞−𝑖, ∀𝑖 ≥ 0

• ⋁𝑘−1
𝑖=0 𝜎−𝑖

𝜅 (𝒞0) = 𝒞0⋯𝑘−1

• ⋁𝑘−1
𝑖=−𝑘 𝜎−𝑖

𝜅 (𝒞0) = 𝒞−𝑘⋯𝑘−1



Kolmogorov-Sinai entropy of zip shifts 27

Lem.4.1

𝐻𝜇(𝒞0) = ∑
𝛼∈Α

−𝑝𝛼 log 𝑝𝛼 = ℎ(𝜌Α)

𝐻𝜇(𝒞−1) = ∑
𝛽∈Β

−𝑝𝛽 log 𝑝𝛽 = ℎ(𝜌Β)



Kolmogorov-Sinai entropy of zip shifts 28

Lem.4.2

𝐻𝜇(𝒞−𝑘0⋯𝑘1) = 𝑘0𝐻𝜇(𝒞−1) + 𝑘1𝐻𝜇(𝒞0), ∀𝑘0, 𝑘1 ∈ ℕ



Kolmogorov-Sinai entropy of zip shifts 29

Lem.4.3

𝒫𝑘 ≔ 𝒞−𝑘…𝑘−1 ⇒ ⋁

𝑛−1

𝑖=0

𝜎−𝑖
𝜅 𝒫𝑘 = 𝒞−𝑘⋯𝑘+𝑛−2.



Kolmogorov-Sinai entropy of zip shifts 30

ℎ𝜇(𝜎𝜅, 𝒫𝑘) = lim
𝑛→∞

1
𝑛𝐻𝜇(⋁

𝑛−1

𝑖=0

𝜎−𝑖
𝜅 𝒫𝑘)

= lim
𝑛→∞

1
𝑛(𝑛 𝐻𝜇(𝒞−1) + (𝑘 + 𝑛 − 1)𝐻𝜇(𝒞0))

= 𝐻𝜇(𝒞0)



Kolmogorov-Sinai entropy of zip shifts 31

Theorem C Thm.4.4

ℎ𝜇(𝜎𝜅) = 𝐻𝜇(𝒞0).

In fact, {𝒫𝑘} is a generating sequence and is non-decreasing. Then, by the
Kolmogorov-Sinai theorem,

ℎ𝜇(𝜎𝜅) = lim
𝑘→∞

ℎ𝜇(𝜎𝜅, 𝒫𝑘) = 𝐻𝜇(𝒞0).



Folding entropy 32

ℱ𝜇(𝑇) ≔ 𝐻𝜇(ℰ/𝑇−1ℰ).

𝐻𝜇(𝒫/ℛ) ≔ ∫
𝑅∈ℛ

𝐻𝜇𝑅(𝒫/𝑅) 𝜇𝑅(𝑑𝑅),

where {𝜇𝑅}𝑅∈ℛ is a disintegration of 𝜇 with respect to
ℛ. David Ruelle



Folding entropy of zip shifts 33

Theorem D Thm.4.6

ℱ𝜇(𝜎𝜅) = 𝐻𝜇(𝒞0) − 𝐻𝜇(𝒞−1).



Disintegration of the measure 34

• ̂𝑥(𝛼) ≔ (⋯𝑥−2 ;  𝛼𝑥0⋯), ∀𝛼 ∈ 𝜅−1(𝑥−1)

• ̂𝑥 ≔ 𝜎−1
𝜅 (𝑥) = { ̂𝑥(𝛼) : 𝛼 ∈ 𝜅−1(𝑥−1)}

• ̂𝑋 ≔ { ̂𝑥 : 𝑥 ∈ 𝑋} ⊂ 𝜎−1
𝜅 (ℰ),  𝑋 ⊂ Σ.

• The quotient measure �̂� is given by

�̂�( ̂𝑋) = 𝜇(𝜋−1( ̂𝑋)) = 𝜇(𝜎−1
𝜅 (𝑋)) = 𝜇(𝑋).



Disintegration of the measure 35

• For every 𝛽 ∈ Β, we define the following probability distribution

(𝑞𝛽
𝛼 : 𝛼 ∈ 𝜅−1(𝛽)), where 𝑞𝛽

𝛼 ≔
𝑝𝛼
𝑝𝛽

.

• The conditional measure on ̂𝑥 ∈ 𝜎−1
𝜅 (𝜀) is given by

𝜇�̂�({ ̂𝑥(𝛼)}) ≔ 𝑞𝑥−1
𝑠 ,  ∀𝛼 ∈ 𝜅−1(𝑥−1).

The family {𝜇�̂�}�̂�∈𝜎−1
𝜅 (𝜀) is a disintegration of 𝜇 with respect to 𝜎−1

𝜅 (ℰ).



Folding entropy of zip shifts 36

The folding entropy of 𝜎𝜅 is given by

ℱ𝜇(𝜎𝜅) ≝ 𝐻𝜇(ℰ/𝜎−1
𝜅 (ℰ)) = ∫

�̂�∈𝜎−1
𝜅 (ℰ)

𝐻𝜇�̂�(ℰ/ ̂𝑥)𝑑�̂�( ̂𝑥)



Folding entropy of zip shifts 37

ℱ𝜇(𝜎𝜅) = ∑
𝛽∈Β

∫
�̂�∈ ̂𝐶−1[𝛽]

𝐻𝜇�̂�(ℰ/ ̂𝑥)𝑑�̂�( ̂𝑥)

= ∑
𝛽∈Β

  ∑
𝛼∈𝜅−1(𝛽)

(−𝑞𝛽
𝛼 log 𝑞𝛽

𝛼)  �̂�( ̂𝐶−1[𝛽])

= ∑
𝛽∈Β

  ∑
𝛼∈𝜅−1(𝛽)

(−𝑞𝛽
𝛼 log 𝑞𝛽

𝛼) 𝑝𝛽

= ∑
𝛽∈Β

∑
𝛼∈𝜅−1(𝛽)

−𝑝𝛼(log 𝑝𝛼 − log 𝑝𝛽), since 𝑞𝛽
𝛼 ⋅ 𝑝𝛽 = 𝑝𝛼

= ∑
𝛼∈Α

−𝑝𝛼 log 𝑝𝛼 − ∑
𝛽∈Β

−𝑝𝛽 log 𝑝𝛽 = 𝐻𝜇(𝒞0) − 𝐻𝜇(𝒞−1).



Folding entropy of zip shifts 38

In particular,

ℎ𝜇(𝜎𝜅) = ℱ𝜇(𝜎𝜅) + ℎ(𝜌Β).



Ornstein isomorphism
theorem for n-to-1
LM-Bernoulli
transformations
Martins, N.,Mehdipour, P, Varão, R.
Preprint (2025) . 🔖



Isomorphism theorem 40

Theorem E Thm.5.39

Two n-to-1 LM-Bernoulli transformations of same entropy are iso-
morphic.



Uniform zip shifts 41

Lem.5.2; Prop. 5.3; Thm.5.4

• 𝜎𝜅 n-to-1 ⇒ 𝜎𝜅 is a (𝑘, 𝑘𝑛)-zip shift

• 𝜎𝜅1, 𝜎𝜅2 uniform n-to-1 (𝑘, 𝑘𝑛)-zip shifts ⇒ 𝜎𝜅1 ≃ 𝜎𝜅2

• Let 𝜎𝜅1, 𝜎𝜅2 uniform n-to-1 zip shifts. Then

𝜎𝜅1 ≃ 𝜎𝜅2 ⇔ ℎ𝜇(𝜎𝜅1) = ℎ𝜇(𝜎𝜅2)



Ornstein characterization of Bernoulli shifts 42

Ornstein, 1974 Prop.5.5

An automorphism 𝑇 : 𝑋 → 𝑋  is isomorphic to a Bernoulli shift
𝜎 : ΣΑ → ΣΑ with distribution 𝜌Α = (𝑝𝛼 : 𝛼 ∈ Α) if, and only if, there
is a partition 𝒫 such that

a) dist(𝒫) = 𝜌Α

b) 𝒫 is a generating for 𝑇

c) {𝑇𝑘𝒫}
𝑘∈ℕ

 is a independent sequence.



Ornstein characterization of Bernoulli shifts 43

Ornstein, 1974 Prop.5.6

Two Bernoulli transformations are isomorphic if, and only if, there are
partitions 𝒫 and ℛ such that

dist(⋁

𝑘

𝑖=0

𝑇−𝑖
1 𝒫) = dist(⋁

𝑘

𝑖=0

𝑇−𝑖
2 ℛ), ∀𝑘 ∈ ℕ.



Domain and image partitions 44

• A image partition 𝒬 = {𝑄1, …, 𝑄𝑚} of a n-to-1 local isomorphism a partition
such that for all 𝑃𝑖 ∈ 𝑇−1𝑄𝑗 , the map

𝑇 |𝑃𝑖
: 𝑃𝑖 → 𝑋

is an automorphism.

• The collection 𝒫 of all 𝑃𝑖 is a domain partition

T



Characterization of n-to-1 LM Bernoulli 45

Thm.5.19

An n-to-1 local isomorphism 𝑇 : 𝑋 → 𝑋  is a LM-Bernoulli transfor-
mation with distribution 𝜌Α = (𝑝𝛼 : 𝛼 ∈ Α) if, and only if, there is a
domain partition 𝒫 such that

a) dist(𝒫) = 𝜌Α

b) 𝒫 is a generating for 𝑇

c) The sequences {𝑇𝑘𝒫}
𝑘∈ℕ

 and {𝑇−𝑘𝒫}
𝑘∈ℕ

 are independent.



The copying condition 46

Let 𝑇1, 𝑇2 to be two n-to-1 LM-Bernoulli transformations and 𝒫 and ℛ be
partitions of 𝑋1 and 𝑋2, respectively.

The process (𝑇1, 𝒫) is a copy of the process (𝑇2, ℛ), and we denote by

(𝑇1, 𝒫) ∼ (𝑇2, ℛ)

when, for all 𝑘 ≥ 0,

dist(⋁

𝑘

−𝑘

𝑇−𝑖
1 𝒫) = dist(⋁

𝑘

−𝑘

𝑇−𝑖
2 ℛ).



The copying condition 47

Thm.5.21

Let 𝑇1, 𝑇2 to be two n-to-1 LM-Bernoulli transformations and 𝒫 and ℛ
to be generating partitions, respectively. Then,

(𝑇1, 𝒫) ∼ (𝑇2, ℛ) ⇔ 𝑇1 ≃ 𝑇2.



Metrics on partitions and processes 48

• Distance between the distributions of two partitions of same cardinality:

|dist(𝒫) − dist(ℛ)| = ∑
𝑘

𝑖=1
|𝜇(𝑃𝑖) − 𝜇(𝑅𝑖)|.

dist(𝒫) = dist(ℛ) = (1
2, 1

4, 1
4)



Metrics on partitions and processes 49

• Distance between partitions of the same space and same cardinality:

|𝒫 − ℛ| = ∑
𝑘

𝑖=1
𝜇(𝑃𝑖 ▵ 𝑅𝑖)

dist(𝒫) = ( 1

2
, 1

4
, 1

4
)

dist(ℛ) = ( 1

4
, 3

8
, 3

8
)

|𝒫 − ℛ| = 1

2
.

• 𝒫 ↦ ℎ𝜇(𝑇, 𝒫) is a continuous function in the partition metric.
• The space of all partitions is connected in the partition metric.
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• Distance between sequences of partitions

𝑑({𝒫𝑖}
𝑘
1 , {ℛ𝑖}

𝑘
1 ) = inf 1

𝑘 ∑
𝑘

𝑖=1
||𝒫𝑖 − ℛ𝑖||,

where the infimum is taken over all sequences of partitions {𝒫𝑖}
𝑘

1
, {ℛ𝑖}

𝑘

1
 of a

same Lebesgue space such that

dist(⋁

𝑘

𝑖=0

𝒫𝑖) = dist(⋁

𝑘

𝑖=0

𝒫𝑖), dist(⋁

𝑘

𝑖=0

ℛ𝑖) = dist(⋁

𝑘

𝑖=0

ℛ𝑖)
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• Distance between processes

𝑑((𝑇1, 𝒫), (𝑇2, ℛ)) = sup
𝑘

d({𝑇−𝑖
1 𝒫}

𝑘

1
, {𝑇−𝑖

2 ℛ}
𝑘

1
)
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An n-to-1 LM-Bernoulli process (𝑇1, 𝒫) is finitely determined if for every 𝜀 > 0,
there are 𝛿 > 0 and 𝑘 ∈ ℕ such that if an n-to-1 LM-Bernoulli process (𝑇2, ℛ)
satisfies the conditions

a) |𝒫| = |ℛ|

b) ||ℎ𝜇(𝑇1, 𝒫) − ℎ𝜇(𝑇2, ℛ)|| < 𝛿

c) |
|dist(⋁𝑘

𝑖=0 𝑇−1
1 𝒫) − dist(⋁𝑘

𝑖=0 𝑇−1
2 ℛ)|

| < 𝛿,

then

𝑑((𝑇1, 𝒫), (𝑇2, ℛ)) < 𝜀.
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Cor.5.24

If (𝑇, 𝒫) is an n-to-1 LM-Bernoulli process and {𝑇−𝑖𝒫}
𝑖∈ℕ

 is an inde-
pendent sequence, then (𝑇, 𝒫) is finitely determined.
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Rokhlin lemma for LM-Bernoulli Thm.5.25

Let 𝑇 : 𝑋 → 𝑋  be a LM-Bernoulli transformation, 𝑘 ≥ 0 and 𝜀 > 0.
There is a disjoint measurable sequence

𝐹, 𝑇𝐹, …, 𝑇𝑘−1𝐹,

such that 𝜇(⋃𝑘−1
𝑖=0 𝑇 𝑖𝐹) > 1 − 𝜀.
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The sequence {𝑇 𝑖𝐹}𝑘−1
0

 is a stack of base 𝐹 and lenght 𝑘.

F

TF

T 2F

T 3F

T 4F
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Strong Rokhlin lemma for LM-Bernoulli Thm.5.27

Let (𝑇, 𝒫) to be a LM-Bernoulli process, 𝑘 ≥ 0 and 𝜀 > 0. There is a
stack

𝐹, 𝑇𝐹, …, 𝑇𝑘−1𝐹,

such that 𝜇(⋃𝑘−1
𝑖=0 𝑇 𝑖𝐹) > 1 − 𝜀  and dist(𝒫/𝐹) = dist(𝒫).
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F

TF

T 2F

T 3F

T 4F

P1

P2

The induced distribution of the base of the stack is the same as 𝒫.
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F

TF

T 2F

T 3F

A B C D E G H
F

T 4F

P1

P2

Superimpose the stack on the copy of F below

1

2

1

1

2

1

2

1

1

1 1

2

1

1

1 1

1

2

1

2 2

1

2

1

2 2

1

1

2

1 1

2

1

2

2

⋁

5−1

𝑖=0

𝑇−𝑖(𝒫/𝑇 𝑖𝐹)/𝐹 = ⋁

5−1

𝑖=0

𝑇−𝑖𝒫/𝐹.
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F

TF

T 2F

T 3F

A B C D E G H
F

T 4F

P1

P2

Superimpose the stack on the copy of F below

1

2

1

1

2

1

2

1

1

1 1

2

1

1

1 1

1

2

1

2 2

1

2

1

2 2

1

1

2

1 1

2

1

2

2

𝐴 = 𝐹 ∩ 𝑃1 ∩ 𝑇−1(𝑃2) ∩ 𝑇−2(𝑃1) ∩ 𝑇−3(𝑃1) ∩ 𝑇−4(𝑃2).

𝒫-5-name of 𝐴 : (1, 2, 1, 1, 2)
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Prop. 5.35

Let (𝑇1, 𝒫) and (𝑇2, ℛ) to be two n-to-1 LM-Bernoulli processes with
(𝑇2, ℛ) f.d. Given 𝜀 > 0, there are 𝛿 > 0 and 𝑘 ∈ ℕ such that if:

a) ℎ𝜇(𝑇1) ≥ ℎ𝜇(𝑇2, ℛ)

b) |𝒫| = |ℛ|

c) |
|dist(⋁𝑘−1

𝑖=0 𝑇−𝑖
1 𝒫) − dist(⋁𝑘−1

𝑖=0 𝑇−𝑖
2 ℛ)|

| < 𝛿

d) ||ℎ𝜇(𝑇1, 𝒫) − ℎ𝜇(𝑇2, ℛ)|| < 𝛿

then there is 𝒫 such that ||𝒫 − 𝒫|| < 𝜀  and (𝑇1, 𝒫) ∼ (𝑇2, ℛ).
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Lem. 5.36

𝒫 is a generating partition for 𝑇 iff for each ℛ and 𝜀 > 0, there is 𝑘
such that

ℛ ≺
𝜀 ⋁

𝑘

−𝑘

𝑇 𝑖𝒫.
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Lem. 5.37

Let 𝒫 be a generating partition for a n-to-1 LM-Bernoulli 𝑇, and
suppose

ℎ𝜇(𝑇, 𝒫) = ℎ𝜇(𝑇, ℛ)

with (𝑇, 𝒫), (𝑇, ℛ) both f.d. Given 𝜀 > 0, there is ℛ such that

a) (𝑇, ℛ) ∼ (𝑇, ℛ)

b) ||ℛ − ℛ|| < 𝜀

c) 𝒫 ≺
𝜀

⋁𝑘
−𝑘 𝑇 𝑖ℛ,  𝑘 ∈ ℕ
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Prop. 5.38

Let 𝒫 be a generating partition for a n-to-1 LM-Bernoulli 𝑇, and
suppose

ℎ𝜇(𝑇, 𝒫) = ℎ𝜇(𝑇, ℛ)

with (𝑇, 𝒫), (𝑇, ℛ) both f.d. Given 𝜀 > 0, there is ℛ such that

a) (𝑇, ℛ) ∼ (𝑇, ℛ)

b) ||ℛ − ℛ|| < 𝜀

c) ℛ is generating for 𝑇.
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Prop. 5.38

Let (𝑇1, 𝒫) and (𝑇2, ℛ) be two n-to-1 LM-Bernoulli processes f.d, 𝒫 and
ℛ generating partitions, such that ℎ𝜇(𝑇1) = ℎ𝜇(𝑇2). Then 𝑇1 and 𝑇2 are
isomorphic.

• (𝑇2, ℛ) f.d → choose 𝒫′ near to 𝒫 such that (𝑇1, 𝒫′) ∼ (𝑇2, ℛ).

• ℎ𝜇(𝑇, 𝒫) = ℎ𝜇(𝑇, ℛ), 𝒫 generating → choose a generating 𝒫 near to 𝒫′ such
that

(𝑇1, 𝒫) ∼ (𝑇2, ℛ).
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Thm A The n-to-1 baker’s map are (2, 2𝑛)-Bernoulli.

Thm B The n-to-1 baker’s map 𝑇 is chaotic.

Thm C ℎ𝜇(𝜎𝜅) = 𝐻𝜇(𝒞0).

Thm D ℱ𝜇(𝜎𝜅) = 𝐻𝜇(𝒞0) − 𝐻𝜇(𝒞−1).

Thm E Two n-to-1 LM-Bernoulli maps of same entropy are isomorphic.
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